Attention module-based spatial–temporal graph convolutional networks for skeleton-based action recognition
نویسندگان
چکیده
منابع مشابه
Spatial Temporal Graph Convolutional Networks for Skeleton-Based Action Recognition
Dynamics of human body skeletons convey significant information for human action recognition. Conventional approaches for modeling skeletons usually rely on hand-crafted parts or traversal rules, thus resulting in limited expressive power and difficulties of generalization. In this work, we propose a novel model of dynamic skeletons called SpatialTemporal Graph Convolutional Networks (ST-GCN), ...
متن کاملSpatio-Temporal Graph Convolution for Skeleton Based Action Recognition
Variations of human body skeletons may be considered as dynamic graphs, which are generic data representation for numerous real-world applications. In this paper, we propose a spatio-temporal graph convolution (STGC) approach for assembling the successes of local convolutional filtering and sequence learning ability of autoregressive moving average. To encode dynamic graphs, the constructed mul...
متن کاملAttention-based Temporal Weighted Convolutional Neural Network for Action Recognition
Research in human action recognition has accelerated significantly since the introduction of powerful machine learning tools such as Convolutional Neural Networks (CNNs). However, effective and efficient methods for incorporation of temporal information into CNNs are still being actively explored in the recent literature. Motivated by the popular recurrent attention models in the research area ...
متن کاملEdge Attention-based Multi-Relational Graph Convolutional Networks
Graph convolutional network (GCN) is generalization of convolutional neural network (CNN) to work with arbitrarily structured graphs. A binary adjacency matrix is commonly used in training a GCN. Recently, the attention mechanism allows the network to learn a dynamic and adaptive aggregation of the neighborhood. We propose a new GCN model on the graphs where edges are characterized in multiple ...
متن کاملTemporal Pyramid Pooling Based Convolutional Neural Networks for Action Recognition
Encouraged by the success of Convolutional Neural Networks (CNNs) in image classification, recently much effort is spent on applying CNNs to video based action recognition problems. One challenge is that video contains a varying number of frames which is incompatible to the standard input format of CNNs. Existing methods handle this issue either by directly sampling a fixed number of frames or ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Electronic Imaging
سال: 2019
ISSN: 1017-9909
DOI: 10.1117/1.jei.28.4.043032